A New Direct Method for Solving Nonlinear Volterra-Fredholm-Hammerstein Integral Equations via Optimal Control Problem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Direct Method for Solving Nonlinear Volterra-Fredholm-Hammerstein Integral Equations via Optimal Control Problem

The nonlinear integral equations arise in the theory of parabolic boundary value problems, engineering, various mathematical physics, and theory of elasticity 1–3 . In recent years, several analytical and numerical methods of this kind of problems have been presented 4, 5 . Analytically, the decomposition methods are used in 6, 7 . The classical method of successive approximations was introduce...

متن کامل

A computational method for nonlinear mixed Volterra-Fredholm integral equations

In this article the nonlinear mixed Volterra-Fredholm integral equations are investigated by means of the modied three-dimensional block-pulse functions (M3D-BFs). This method converts the nonlinear mixed Volterra-Fredholm integral equations into a nonlinear system of algebraic equations. The illustrative   examples are provided to demonstrate the applicability and simplicity of our   scheme.    

متن کامل

A New Polynomial Method for Solving Fredholm –Volterra Integral Equations

Abstract— A new polynomial method to solve Volterra–Fredholm Integral equations is presented in this work. The method is based upon Shifted Legendre Polynomials. The properties of Shifted Legendre Polynomials and together with Gaussian integration formula are presented and are utilized to reduce the computation of Volterra–Fredholm Integral equations to a system of algebraic equations. Some num...

متن کامل

Lagrange Functions Method for Solving Nonlinear Hammerstein Fredholm-Volterra Integral Equations

A numerical method for solving nonlinear Fredholm-Volterra integral equations is presented. The method is based upon Lagrange functions approximations. These functions together with the Gaussian quadrature rule are then utilized to reduce the Fredholm-Volterra integral equations to the solution of algebraic equations. Some examples are included to demonstrate the validity and applicability of t...

متن کامل

Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via a collocation method and rationalized Haar functions

Rationalized Haar functions are developed to approximate the solution of the nonlinear Volterra–Fredholm–Hammerstein integral equations. The properties of rationalized Haar functions are first presented. These properties together with the Newton–Cotes nodes and Newton–Cotes integration method are then utilized to reduce the solution of Volterra–Fredholm–Hammerstein integral equations to the sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2012

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2012/714973